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Machine perception

COLOR




Sensor: Camera

Electromagnetic spectrum

Sl Visible light

Wavelength Energy Frequency
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Light

* Lightis an electromagnetic radiation composed of several frequencies

* Properties are described by its spectrum (i.e., how much of each frequency is present)

Energy radiated in a unit of time w.r.t. wavelength

* E.g, laser light contains only a narrow band of wavelengths (frequencies)

intensity

wave length

* Visible light contains radiation with
wavelengths in interval 400-700nm

Spectral power
distribution

400 450 500 550 600 650 700
Wavelength (nm)




Human color perception

* Human eye (retina) contains specialized cells that react to different

wavelengths differently.

* Three types of cells called “cones”: R, G, B

* Atype of cells called “rods”: intensity only

retina
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Additive mixture model

 What color do we get if we shine a red and green light?

colors mix by summation of
their spectra.
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stems using the additive model
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Subtractive models

colors mix by spectra
multiplication.

 What color do we get if applying
and pigment to white paper?
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Systems using a subtractive model

* Printing on paper

* Crayons

* Photographic film

additive

o i

* See this nice app and play with setups: o= | n

https://graphics.stanford.edu/courses/cs178/applets/colormixing.htmi -
W




Color spaces

* Role of colors pace: Unique color specification (e.g., for reproduction)
» Specifying a color in a color space allows accurate color reproduction on various

media like photo, print and monitor.

* Defined by the choice of primary colors (primaries)
Recall: The human eye is equipped with sensory cells for the perception of the three primary colors (RGB)

* A new coloris a weighted sum of primaries

By mixing the colours, we get any colour that
lies within the triangle of primaries.

* Mixing weights r,g,b to get any color were estimated on human subjects



Linear color space example: CIE XYZ

e |International Commission on lllumination
(Commission international d’eclairage -- CIE), 1931

Artificial brirharies

1 1
0 80O 850
wavelength in

* Representation by chromaticity only [x,y]:

X . Y = A
Xtv+2' 9 = X3v+2'* = X1v+Z

r+y+z=1

T ==



https://www.sciencedirect.com/topics/engineering/color-matching-function

Linear color space example: RGB

* Single wave-length primaries R

55

Yellow _ Magenta

e Appropriate for use in imaging
devices (e.g., monitors), but

not for human perception |
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HSV colorspace

* Hue (barvnost), Saturation (nasicenje), Hue

Value (intenziteta)
* Nonlinear — hue coded by angle

* Python: cv2.cvitColor(l, Type) A NS
Type increasing hue %
cv2.COLOR_RGB2HSV D magenta
cv2.COLOR_HSV2RGB

Saturation

cyan
(H=1/2)

increasing . .
saturation increasing
moves away value moves 0
from the axis toward
lighter

colors

black




Distances in colourspaces

* Do distances between points in the colourspace make sense
perceptually?
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Distances in color spaces

* Not necessarily: CIE XYZ is nonuniform colorspace — Euclidean distance between
coordinates of colors in colorspace is not a good indicator of color similarity (in
terms of human perception).
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McAdar;l ellipses:
Just (human) noticeable differences in color
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Uniform color spaces

~ .~ ___ ] Nonuniform colour space
e Transforms such that ellipses are mapped ClIE XYZ

into circles
= distances better replicate the human
perception of color similarity.

 Examples of uniform colour spaces: l

e CIEu'v’ T T T CIE UV Uniform colour space

+ CIE Lab (1976)

700nm




Computing color similarity between objects

e How to summarize the color?
* |deal: just compute the average (r,g,b)

. N
2 Xi
= (74, 9i, bs )T
Color of the (r,g,b) at i-th pixel

P-rgb

X

— ZIH

Issue: a single value does not
sufficiently capture the color
distribution




Describe the color by a Gaussian

 Summarize the color by parameters of a Gaussian distribution

00 01 02 03 0.4
| 1 1 1 I

But often a more flexible model of color distribution is required!




Machine perception

COLOR DESCRIPTION BY USING HISTOGRAMS




What is a histogram?

* Image histogram records the frequency of intensity levels

h(i) = the number of pixels in I with the intensity value ¢ 26 intensity levels

h(i) = card{(u,v) | I(u,v) =i }

e Example:

h(z) |0{2(10/0|0[0|5|7(3]|9]|1|6]|3]6|3]|2

t 001 23 45 6 7 8 9101112131415
Intensity value




Color histogram

* Color statistic
* Example of a 3D RGB histogram H(R, G, B) visualization
* Each pixel color is a point in 3D space (RGB)

* Calculate the 3D color histogram

* H(R,G,B) = number of pixels with color [R,G,B]




Color histogram

* Robust representation of images

* Translation, scale, partial occlusion




Intensity normalization

* Intensity is contained in each color channel
 Multiplying a color by a scalar changes the intensity but not the hue (,,true” color).
* This means that we can normalize a color by its intensity.
* Intensity is defined as: =R + G + B:
* Chromatic representation:

_ R g = G h — B
~ R+G+B R+G+B ~ R+G+B

r

 We can now use only a 2D space (rg), since it holds that

r+g+b=1



Color comparison via histograms

* Compare images indirectly — compare only their descriptors
(histograms)

-
.

Test image

A measure of distance/similarity
between the histograms is required!

-k

ANIMIEEE (23073

Known objects




Popular distances: Euclidean distance

* Definition (=L, norm)

d(Q,V) = \/Z (gi — v7)?

* Explanation
* Looks for differences in histogram cells.
* Interpretation: Distance in feature space.
* Range of output values: [0,1]
* All cells receive equal weight. V

e Susceptible to noise!




Popular distances: pdf similarity

* Similarity between two probability density functions A
e Chi-squared (slo., hi-kvadrat):

9 (Qi — Uzi)
. —
X (Q,V) § ——
WATCH OUT FOR qi:Vi=O!!

2

* Kullback-Leibler divergence: . . . _
Symmetric version (Jeferey’s divergence):

KL(Q,V)=> glog g— JD(Q,V)=KL(Q,V)+ KL(V,Q)

1
Not a proper metric (not symmetric)

* Hellinger distance:

duen(Q, V) = [1 =2 /@i

Proper metric, constrained to interval [0,1]




Previously at MP...

e Basic image processing techniques

Thresholding Morphology Region labeling  Region descriptors

* Color — perception, color spaces and color histograms as image descriptors




Machine perception

FILTERING




Can be applied for...

* Noise reduction and image restoration

Less noisy

Filtering

| )




Types of image noise

* Salt and pepper (sol in poper)

e Random black and white dots.

* Impulse noise (Impulzni Sum)

e Random occurrence of white dots.

* Gaussian noise (Gausov Sum)

* The intensity variation sampled
from a Gaussian (Normal)
distribution.

Impulse noise Gaussian noise



Gaussian noise

Matlab:

>> im = imread(“peppers.jpg”)
>> noise = randn(size(im)) .*5;
>> output = im + noise;

> o

-

-

Ideal Image Ideal Image Noise process
e i o — i o Ideal Image
f(z,y) fz,y) = f(z,y) + n(z,y) —_—

f(x,y)

Gaussian i.i.d. (“white") noise:
n(l‘! y) o *’Mr(;-"! G-)




How to remove a Gaussian noise?

149.97 -> 150

A = ones(100,100)*150 B = A + randn(size(A))*20 C =B*0 + mean(B(:))

* (B) = (A) + (Gpoise) = (A) = 150
e Solution: just compute the average value!

 Might it really be this simple?




Let’s try to remove the noise...

* Assumption:
* Pixels are similar to their neighboring pixels

* The noise is independent among pixels (“i.i.d. = independent, identically distributed”)
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* So let’s compute an improved estimate of pixel’s intensity by replacing it

with an average of pixel intensities in its immediate neighborhood...



A moving average 2D

Flz, y] Glz, y.




A moving average 2D

Flz, y] Glz, y.




A moving average 2D

Flz, y] Glz, y.




A moving average 2D

Flz, y] Glz, y.




A moving average 2D

Flz, y] Glz, y




A moving average 2D

 Assume the averaging window size is 2k+1 x 2k+1:

G[i,j]—(2k+1)2 > Z u,j + vl

=—kv=—
J \ J
Y |
Equal weights for A loop over all pixels within the
all pixels. neighbourhood of F[i,j].

* Now let’s generalize this by making a weight depend on relative position from the
central element.

Gli, j] = Z Z H[u v]F[z u, j + v]

w=—kv=—Fk
Nonun/form weights




Correlation filtering

k k
Gli,j1= >_ Y Hlu,v]F[i+ u,j+ v]

u=—kv=-%k
* This is called cross-correlation and abbreviate as:

G=HQF

1 2| 1(0,0)

* Image filtering

* Replace image intensity with a weighted F
sum of a window centered at that pixel.

* The weights in the linear combination
are prescribed by the filter’s kernel.

(N,N)




Convolution as correlation

 Compute convolution by cross-correlation:
* Flip the filter in both dimensions (horizontal + vertical)

* Apply cross-correlation

Gli, 7] = Z Z Hlu,v]F[i — u,j — v]

u=—kv=—k
14 € (0,0)
G=Hx*F H
T 4 l
. =
convolution
operator
(N,N)




Convolution vs. Correlation

 Correlation

k k
Gli.jl= > > H[ujv]F[i-I%u;j-l-v]
n=—kov=-—%k

G=HXF
Notice the difference?

* Convolution

¢
Gli, 7] = Z Z Hlu,v]F[i —u,j — v]

u=—kv=-—

(we will also use “*” to denote convolution,

G=HxF ie,G=H=xF)
* Comment:

* For a symmetric filter, H[-u,-v] = H[u,v], correlation = convolution.



Properties of convolution

e Shift-invariant:
The filter weights remain the same, regardless the position.

* Linear (superposition & scaling): h * (a1f; + axf,) = a;(h * f1) + a,(h * f5)
« Commutative: fxg=g=*f

* Associative: (f*g)*h=f=*(g=*h)

* As result, application of multiple filters is equal to application of a single filter :
((f*b1)*b2)*b3 = f % (by * by * b3)

* Identity: f xe = f ,wheree=[...,0,0, 1,0, 0, ...] a unit impulse.
° D : : . i( ) — i — i
erivative: 7x f*xg)= axg f= axf g



Filtering: Boundary conditions

* What to do at the image boundaries?

* The kernel exceeds image boundaries at the edge

* Need for extrapolation

* Methods (assumptions): } —

e Crop (black)

* Bend image around
* Replicate edges

* Mirror image




Filtering: Boundary conditions

 What to do at the image boundaries?

* The kernel exceeds image boundaries at the edge
* Need for extrapolation

 Methods (Python): cv2.filter2D( .. BorderTypes= )

Enumerator https://docs.opencv.org/master/d2/de8/group core array.h
oon cvoomots consTayy | Mittileseserenlsissss winsomespectea =ty | #2922 09F2f4869e304c82d07739337eae7c5

BORDER_REFLICATE
- | poaasa|abcdefgh|hhhhhhh

Python: cv.BORDER_REPLICATE

BORDER_REFLECT
Python: cv.BORDER_REFLECT

BORDER_WRAP
Python: cv.BORDER_WRAP

cdefgh |abcdefgh | abcdefg
BORDER_REFLECT_101 1 .
o e aution: the method performs
Python: cv. BORDER_REFLECT_101 []
BORDER_TRANSPARENT

Python: cvBORDER_TRANSPARENT | 7 2bedefeniisidmo CO rre/a tion’ n Ot Con VO/U tion

BORDER REFLECT101 | meas BORDER_REFLECT_101

Python: cv. BORDER_REFLECT101

BORDER_DEFAULT

aaaaa BORDER_REFLECT_101
Python: cv. BORDER_DEFAULT - -

BORDER_ISOLATED
Python: cv.BORDER_ISOLATED

do not look outside of ROI


https://docs.opencv.org/master/d2/de8/group__core__array.html#ga209f2f4869e304c82d07739337eae7c5

Smoothing by a Gaussian

Original Filtered




Gaussian smoothing

e Gaussian kernel

(7~ = e 202
d 2o

* Rotation symmetric

* Pixels closer to center get higher weight

* Makes sense for a probabilistic inference
of a signal content.




Gaussian smoothing

Effect of o

* How about parameters?

e Variance o? determines the extent

of smoothing...

o = 2 by kernel o = 5 by kernel
30x30 30x30




Gaussian smoothing

0,4

* How about parameters?

0,3

e Kernel size!

0,2

* Infinite support, but discretization makes it finite.

0,1

=i
=]

e S iy e
a a Fl a
=

o =5 with 10x10 o =5 with 30x30
kernel kernel

* Rule of thumb: set half size of the kernel to 3¢




Gaussian filtering in Matlab

>> sigma = 5;
>> hsize = 2*sigma*3+1;
>> h = fspecial('gaussian', hsize, sigma);

>> figure(1l); surf(h);

>> figure(2); imagesc(h); axis equal ;

>> outim = imfilter (im, h);
>> figure(3); imshow(outim) ;

Python:

outim =
cv2.GaussianBlur(im,(31,31),0)




Effects of smoothing

Increasing the noise extent—>

g=0.05 g=0.1

& 37IS [9UJd)] 3y} Suisealou|




Efficient implementation

* Both, Uniform as well as Gaussian kernels are separable:

* Apply convolution at each row separately using a 1D kernel:
1

g(x)= exp(—x’ /(26%)) g(x) >

V2ro | |:> Iz
* Next apply a 1D convolution at each column:

1 !

(y)= exp(—vy* /(20° §

g(y) Dono p(=y"/(207)) ‘

qvr—7> .,
r | I

* Why is this separation possible?

e Convolution is linear, associative + commutative G2 >

gx*(gy*l):(gx*gy)*| 90)* 9(y) |




Strange artefacts in convolution results...

Original




Convolution and spectrum

* Convolution of two functions in image space is equivalent
to the product of their corresponding Fourier transforms (spectra).

T(< xg) = F(f)OF(g)

/ N
Image f Fourier transforms
and filter g of fand g.

e Convolution manipulates the image spectrum

* Enhancing/suppressing frequency bands in image.



Recall the Fourier transform

A signal is represented as a sum of sines/cosines of various frequencies

SolgosfSedoay

f(x) = Z a,, cos(nx) + b, sin(nx)




Convolution: removing noise

* Noise corresponds to adding high
signal Frequency spectrum

frequencies. To remove these, we apply a .
9 | PRy . (eg., FFT fag:
low-band pass filter.

R
L] =

* The spatial box filter transforms to a sinc in F(fx9) =F()OF(9)
frequency space, causing artefacts (side fagn
lobes). | L _

* A Gaussian maintains a compact support in

both image and frequency space. Hence, it's fagn
nal N pec
more appropriate as a low-band-pass filter. % A -




Strange artefacts in convolution results...

Filter does not
introduce high
frequencies

Filter introduces
high frequencies

Original

— Filtered




Linear filters in practice

0Jo]o NFAE
0[2]o| = S[i][1][1])=
ololo 1[1]1

Original

Sharpening filter:
Enhances differences by local
averaging.

To explain this, think about what happens in frequency domain.



Sharpening filter

before after

To explain this, think about what happens in frequency domain.




Nonlinear filters: Median filter

 Basic idea

* Replace the pixel intensity by a median of intensities within a small patch.

10]15]20
27

3131|30

—_—
10 15 20 23 |27|30 31 33 90

[
I
o
-

l Sort

L

Median value

10115120 l Replace
231 27127
3313130

* Properties

* Does not add new gray-levels into the image.

* Removes outliers: appropriate for impulse noise and salt&pepper noise
removal.



The Median filter

Salt&pepper
noise

\ ' After median
filtering

ML LY [N " Jh

Plot of a line in the image



1an

Gauss

Median vs.

Gaussian
filter




Machine perception

LINEAR FILTERING AS TEMPLATE MATCHING




Filtering as template matching

Template




Apply correlation with template

Template

Correlation map




Issues with template matching over scales

* But the object may be bigger/smaller in the image!

 Well, we could carry out correlation for different scales of the

] [
O (| B

 — W — Then with this one

— Start with this small one

template...

etc. ...




Template matching in scale space

* But rather than template, we scale the input image

Reduce the image size [+* « *

At
_9_@9_ « /| Keep the same size

Reduce the image size| « % .+ Y¢

>*r
%@_@_ < = Keep the same size

pA g
{:} = < =/|  Start with this small one




Efficient resizing: Image pyramids

Low resolution

level k(= 1 pixle\ [ ¥
level k-1 / l\/ .
\
2 \
A
|

7 7 = -

level 0 (= original image)

Reduce (resample) the image!

High resolution




How do we reduce an image?

e Naive:

* Remove every second pixel...

original image subsampled

I — =
TN

* Problem: the structures in image change!
* This effect is called Aliasing.

* Look into frequency domain to explain this (Forsyth-Ponce Book)



Avoiding aliasing

* Nyquist theorem:
* |f we want to reconstruct all frequencies up to f, we have to sample the signal by

at least a frequency equal to 2f.

original image subsampled

* Meaning: we cannot reconstruct some of IIIIIIIIII — I
the high frequencies when subsampling! IIIIIIIIII

e Solution: Remove the high frequencies that cannot be reconstructed,

then subsample.



Gaussian pyramid

Low resolution (G3 * gaussian) »L 2
ANISSIATTY

smooth \

IIIIIIII

A

Hiih resolution



Summary: Gaussian pyramid

e Construction: get a new level directly from the previous

* Smooth by a small filter and resample

e Reasons for Gaussian smoothing...

* Convolution Gauss*Gauss = new Gauss

* G(of) * G(05)=G(of + 03)

e Reason for size reduction...

e Gaussian is a low-band-pass filter, so we get a redundant representation of a
smoothed image.

—> No need to store a smoothed image in full resolution.

73



Why a pyramid?

* Enables efficient implementation of many detection methods
* Multi-scale object detection ...

* Multi-scale edge detection ...

* Multi-scale feature point detection ...

 Manipulation of selected frequency bands ...

* Old stuff: Scale space




Fun with hybrid images...

Gaussian filter
A. Oliva, A. Torralba, P.G. Schyns, “Hybrid Images,” SIGGRAPH 2006

g
AT gy ¢ 16
e TCQUENCY (c/1)

—

o ' gain

fre%gmcy (c/)

Laplacian filter: <>_

Unit impulse Gauss Laplacian of Gaussian



http://cvcl.mit.edu/hybridimage.htm
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