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COLOR
Machine perception
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Sensor: Camera

Near-infrared light

Far-infrared light

Terahertz light

http://userweb.elec.gla.ac.uk/d/dpaul/terahertz.html

Electromagnetic spectrum Visible light
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Light

• Light is an electromagnetic radiation composed of several frequencies

• Properties are described by its spectrum (i.e., how much of each frequency is present)

Energy radiated in a unit of time w.r.t. wavelength

• E.g., laser light contains only a narrow band of wavelengths (frequencies)

• Visible light contains radiation with 

wavelengths in interval 400-700nm

wave length

intensity

5



Human color perception

• Human eye (retina) contains specialized cells that react to different 

wavelengths differently.

• Three types of cells called “cones”: R, G, B

• A type of cells called “rods”: intensity only

Yellow
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Additive mixture model

• What color do we get if we shine a red and green light?

colors mix by summation of 

their spectra.

colors added to black.

perceive

perceive

perceive
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Systems using the additive model

http://www.tech-faq.com/how-lcd-projectors-work.html

Monitors LCD projector
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Subtractive models

• What color do we get if applying 

cyan and yellow pigment to white paper?

colors mix by spectra

multiplication.

Pigments remove

the color from the 

incident white light.
Vir: W. Freeman

perceive

perceive

perceive
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• Printing on paper

• Crayons

• Photographic film

• See this nice app and play with setups:
https://graphics.stanford.edu/courses/cs178/applets/colormixing.html

Systems using a subtractive model
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Color spaces

• Role of colors pace: Unique color specification (e.g., for reproduction)

• Specifying a color in a color space allows accurate color reproduction on various 

media like photo, print and monitor.

• Defined by the choice of primary colors (primaries)

• A new color is a weighted sum of primaries

• Mixing weights r,g,b to get any color were estimated on human subjects

By mixing the colours, we get any colour that 
lies within the triangle of primaries.

Recall: The human eye is equipped with sensory cells for the perception of the three primary colors (RGB)

r

g

b
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Linear color space example: CIE XYZ

• International Commission on Illumination 

(Commission international d’eclairage -- CIE), 1931

• Representation by chromaticity only [x,y]:

Artificial primaries
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https://www.sciencedirect.com/topics/engineering/color-matching-function


Linear color space example: RGB

• Single wave-length primaries

• Appropriate for use in imaging 

devices (e.g., monitors), but 

not for human perception

Cyan

MagentaYellow

White

Black
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HSV colorspace

• Hue (barvnost), Saturation (nasičenje), 

Value (intenziteta)

• Nonlinear – hue coded by angle

• Python: cv2.cvtColor(I, Type)

Type:

• cv2.COLOR_RGB2HSV

• cv2.COLOR_HSV2RGB
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Distances in colourspaces

• Do distances between points in the colourspace make sense 

perceptually?

Slide credit:Kristen Grauman15



Distances in color spaces

• Not necessarily: CIE XYZ is nonuniform colorspace – Euclidean distance between 

coordinates of colors in colorspace is not a good indicator of color similarity (in 

terms of human perception).

McAdam ellipses: 
Just (human) noticeable differences in color

Slide credit:Kristen Grauman 16



Uniform color spaces

• Transforms such that ellipses are mapped 

into circles 

→ distances better replicate the human 

perception of color similarity.

• Examples of uniform colour spaces:

• CIE u‘v‘

• CIE Lab (1976)

CIE XYZ

CIE u’v’

Nonuniform colour space

Uniform colour space
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Computing color similarity between objects

• How to summarize the color?

• Idea1: just compute the average (r,g,b)

18

Color of the (r,g,b) at i-th pixel

μ𝑟𝑔𝑏

μ𝑟𝑔𝑏 Issue: a single value does not 
sufficiently capture the color
distribution



Describe the color by a Gaussian

• Summarize the color by parameters of a Gaussian distribution

19

But often a more flexible model of color distribution is required!



COLOR DESCRIPTION BY USING HISTOGRAMS
Machine perception
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What is a histogram?

• Image histogram records the frequency of intensity levels

• Example:

Intensity value

16 intensity levels

256 intensity levels
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Color histogram

• Color statistic

• Example of a 3D RGB histogram 𝐻 𝑅, 𝐺, 𝐵 visualization

• Each pixel color is a point in 3D space (RGB)

• Calculate the 3D color histogram 

• H(R,G,B) = number of pixels with color [R,G,B] 

[Swain & Ballard, 1991] 22



Color histogram

• Robust representation of images

• Translation, scale, partial occlusion

[Swain & Ballard, 1991] 23



Intensity normalization

• Intensity is contained in each color channel

• Multiplying a color by a scalar changes the intensity but not the hue („true“ color).

• This means that we can normalize a color by its intensity.

• Intensity is defined as:  I = R + G + B:

• Chromatic representation:

• We can now use only a 2D space (rg), since it holds that

Slide credit:Bastian Leibe24



Color comparison via histograms

• Compare images indirectly – compare only their descriptors 

(histograms)

Test image

Known objects

Slide credit:Bastian Leibe

A measure of distance/similarity 
between the histograms is required!
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• Definition (=L2 norm)

• Explanation

• Looks for differences in histogram cells.

• Interpretation: Distance in feature space.

• Range of output values: [0,1]

• All cells receive equal weight.

• Susceptible to noise!

Slide credit:Bastian Leibe

Q
V

Popular distances: Euclidean distance
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• Similarity between two probability density functions 

• Chi-squared (slo., hi-kvadrat):

• Kullback-Leibler divergence:

• Hellinger distance:

WATCH OUT FOR qi=vi=0!!

Not a proper metric (not symmetric)

Symmetric version (Jeferey’s divergence):

Proper metric, constrained to interval [0,1]

Popular distances: pdf similarity

27
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Previously at MP…

• Basic image processing techniques

• Color – perception, color spaces and color histograms as image descriptors

Thresholding Morphology Region labeling Region descriptors

28



FILTERING
Machine perception
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Can be applied for…

• Noise reduction and image restoration

• Structure extraction/enhancement (later in the course)

noisy Less noisy

Filtering

Filtering
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Types of image noise

• Salt and pepper (sol in poper)

• Random black and white dots.

• Impulse noise (Impulzni šum)

• Random occurrence of white dots.

• Gaussian noise (Gausov šum)

• The intensity variation sampled

from a Gaussian (Normal) 

distribution.

Vir: Steve Seitz31



Gaussian noise

Matlab:

>> im = imread(“peppers.jpg”);

>> noise = randn(size(im)).*5;

>> output = im + noise;

32
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How to remove a Gaussian noise?

• 𝐵 = 𝐴 + 𝐺𝑛𝑜𝑖𝑠𝑒 = 𝐴 = 150

• Solution: just compute the average value!

• Might it really be this simple?

33

A = ones(100,100)*150 B = A + randn(size(A))*20 C = B*0 + mean(B(:))

149.97 -> 150



Let’s try to remove the noise...

• Assumption: 

• Pixels are similar to their neighboring pixels

• The noise is independent among pixels (“i.i.d. = independent, identically distributed”)

• So let’s compute an improved estimate of pixel’s intensity by replacing it 

with an average of pixel intensities in its immediate neighborhood...
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A moving average 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz 35



A moving average 2D
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A moving average 2D
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A moving average 2D
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A moving average 2D
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Source: S. Seitz 39



A moving average 2D

• Assume the averaging window size is 2k+1 x 2k+1:

• Now let’s generalize this by making a weight depend on relative position from the 

central element.

A loop over all pixels  within the
neighbourhood of F[i,j].

Equal weights for
all pixels.

Nonuniform weights

Slide credit: Kristen Grauman 40



Correlation filtering

• This is called cross-correlation and abbreviate as:

• Image filtering

• Replace image intensity with a weighted

sum of a window centered at that pixel.

• The weights in the linear combination

are prescribed by the filter’s kernel.

Slide credit: Kristen Grauman

F

(0,0)

(N,N)

H
4

1 2

3
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Convolution as correlation

• Compute convolution by cross-correlation: 

• Flip the filter in both dimensions (horizontal + vertical)

• Apply cross-correlation

convolution

operator

F

(0,0)

(N,N)

H
4

1 2

3

H
4

12

3

Slide credit: Kristen Grauman 42



Convolution vs. Correlation

• Correlation

• Convolution

• Comment:

• For a symmetric filter, H[-u,-v] = H[u,v], correlation  convolution.

Notice the difference?

Slide credit: Kristen Grauman

(we will also use “*” to denote convolution,
i.e., 𝐺 = 𝐻 ∗ 𝐹.)

43



Properties of convolution

• Shift-invariant: 

The filter weights remain the same, regardless the position.

• Linear (superposition & scaling): ℎ ∗ 𝛼1𝑓1 + 𝛼2𝑓2 = 𝛼1 ℎ ∗ 𝑓1 + 𝛼2(ℎ ∗ 𝑓2)

• Commutative: 𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓

• Associative: 𝑓 ∗ 𝑔 ∗ ℎ = 𝑓 ∗ (𝑔 ∗ ℎ)

• As result, application of multiple filters is equal to application of a single filter : 

𝑓 ∗ 𝑏1 ∗ 𝑏2 ∗ 𝑏3 = 𝑓 ∗ (𝑏1 ∗ 𝑏2 ∗ 𝑏3)

• Identity: 𝑓 ∗ 𝑒 = 𝑓 , where 𝑒= […, 0, 0, 1, 0, 0, …] a unit impulse.

• Derivative:
𝜕

𝜕𝑥
𝑓 ∗ 𝑔 =

𝜕

𝜕𝑥
𝑔 ∗ 𝑓 =

𝜕

𝜕𝑥
𝑓 ∗ 𝑔
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Filtering: Boundary conditions

• What to do at the image boundaries?

• The kernel exceeds image boundaries at the edge

• Need for extrapolation

• Methods (assumptions):

• Crop (black)

• Bend image around

• Replicate edges

• Mirror image

Slide credit: S. Marschner 45



Filtering: Boundary conditions

• What to do at the image boundaries?

• The kernel exceeds image boundaries at the edge

• Need for extrapolation

• Methods (Python): cv2.filter2D( … BorderTypes= )

Slide credit: S. Marschner46

https://docs.opencv.org/master/d2/de8/group__core__array.h
tml#ga209f2f4869e304c82d07739337eae7c5

Caution: the method performs 
correlation, not convolution

https://docs.opencv.org/master/d2/de8/group__core__array.html#ga209f2f4869e304c82d07739337eae7c5


Smoothing by a Gaussian

Original Filtered

Vir slik : Forsyth & Ponce47



Gaussian smoothing

• Gaussian kernel

• Rotation symmetric

• Pixels closer to center get higher weight

• Makes sense for a probabilistic inference

of a signal content.

48



Gaussian smoothing

• How about parameters?

• Variance 2 determines the extent

of smoothing...

Slide credit: Kristen Grauman

σ = 2 by kernel
3030

σ = 5 by kernel 
3030
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Gaussian smoothing

• How about parameters?

• Kernel size!

• Infinite support, but discretization makes it finite.

• Rule of thumb: set half size of the kernel to 3σ

σ = 5 with 1010 

kernel
σ = 5 with 3030 

kernel
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Gaussian filtering in Matlab

>> sigma = 5;

>> hsize = 2*sigma*3+1;

>> h = fspecial('gaussian', hsize, sigma);

>> figure(1); surf(h);

>> figure(2); imagesc(h); axis equal ;

>> outim = imfilter(im, h);

>> figure(3); imshow(outim);

outimim
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Python:

outim =

cv2.GaussianBlur(im,(31,31),0)



Effects of smoothing

Increasing the noise extent→

In
creasin

g th
e kern

e
l size →

Slide credit: Kristen Grauman 52



Efficient implementation

• Both, Uniform as well as Gaussian kernels are separable:

• Apply convolution at each row separately using a 1D kernel:

• Next apply a 1D convolution at each column:

• Why is this separation possible?

• Convolution is linear, associative + commutative

I

g(x)

Slide credit: Bernt Schiele

( ) ( )x y x yg g I g g I  =  

I’

I
G =

g(x)* g(y)

=

I’
g(y)

I’’
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Original 

Filtered

Strange artefacts in convolution results…

Gaussian

Uniform

*

*
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Convolution and spectrum

• Convolution of two functions in image space is equivalent

to the product of their corresponding Fourier transforms (spectra).

• Convolution manipulates the image spectrum

• Enhancing/suppressing frequency bands in image.

Fourier transforms
of 𝑓 and 𝑔.

Image 𝑓
and filter 𝑔

𝓕 𝑓 ∗ 𝑔 = 𝓕(𝑓)⨀𝓕(𝑔)
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Recall the Fourier transform

Images from: https://en.wikipedia.org/wiki/Fourier_transform

A signal is represented as a sum of sines/cosines of various frequencies

𝑓 𝑥 =෍

𝑛

𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛sin(𝑛𝑥)
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Convolution: removing noise

• Noise corresponds to adding high 

frequencies. To remove these, we apply a 

low-band pass filter.

• The spatial box filter transforms to a sinc in 

frequency space, causing artefacts (side 

lobes).

• A Gaussian maintains a compact support in 

both image and frequency space. Hence, it’s 

more appropriate as a low-band-pass filter.

¨

¨

¨

signal Frequency spectrum 
(eg., FFT)

See Forsyth, Ponce: Computer vision, a modern approach.

𝓕 𝑓 ∗ 𝑔 = 𝓕(𝑓)⨀𝓕(𝑔)
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Original 

Filtered

Strange artefacts in convolution results…

Gaussian

Uniform

*

*

Filter does not 
introduce high 
frequencies

Filter introduces 
high frequencies
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Linear filters in practice

Original

111
111
111

000
020
000

-

Sharpening filter:
Enhances differences by local 
averaging.

To explain this, think about what happens in frequency domain.

*(                                            )=  

Source: D. Lowe59



Sharpening filter

To explain this, think about what happens in frequency domain.

before after
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Nonlinear filters: Median filter

• Basic idea

• Replace the pixel intensity by a median of intensities within a small patch.

• Properties

• Does not add new gray-levels into the image.

• Removes outliers: appropriate for impulse noise and salt&pepper noise 

removal.
Slide credit: Kristen Grauman61



The Median filter

Salt&pepper
noise

After median 
filtering

Plot of a line in the image

Slide credit: Kristen Grauman62



Median vs. Gaussian
3x3 5x5 7x7

Gaussian
filter

Median
filter

Slide credit: Svetlana Lazebnik63



LINEAR FILTERING AS TEMPLATE MATCHING
Machine perception
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Filtering as template matching

Template

Slide credit: Kristen Grauman

Where’s waldo?
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Apply correlation with template

Input image Correlation map

Template

∑ = 
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• But the object may be bigger/smaller in the image!

• Well, we could carry out correlation for different scales of the 

template...

Start with this small one

Issues with template matching over scales

Then with this one

etc. …

67



• But rather than template, we scale the input image

Template matching in scale space

Start with this small one

Keep the same size

Keep the same size

Reduce the image size

Reduce the image size
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Efficient resizing: Image pyramids

High resolution

Low resolution

Reduce (resample) the image!
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How do we reduce an image?

• Naive: 

• Remove every second pixel...

• Problem: the structures in image change!

• This effect is called Aliasing.

• Look into frequency domain to explain this (Forsyth-Ponce Book)

original image subsampled
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Avoiding aliasing

• Nyquist theorem: 

• If we want to reconstruct all frequencies up to f, we have to sample the signal by 

at least a frequency equal to 2f.

• Meaning: we cannot reconstruct some of

the high frequencies when subsampling!

• Solution: Remove the high frequencies that cannot  be reconstructed, 

then subsample.

71

original image subsampled



Gaussian pyramid

High resolution

Low resolution

2)*( 23 = gaussianGG

1G

Image=0G

2)*( 01 = gaussianGG

2)*( 12 = gaussianGG

2)*( 34 = gaussianGG

smooth

smooth

smooth

smooth

Source: Irani & Basri72



Summary: Gaussian pyramid

Slide credit: David Lowe

• Construction: get a new level directly from the previous

• Smooth by a small filter and resample

• Reasons for Gaussian smoothing...

• Convolution Gauss*Gauss = new Gauss 

• 𝐺 𝜎1
2 ∗ 𝐺(𝜎2

2)= 𝐺(𝜎1
2 + 𝜎2

2)

• Reason for size reduction...

• Gaussian is a low-band-pass filter, so we get a redundant representation of a 

smoothed image.

 No need to store a smoothed image in full resolution.
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Why a pyramid?

• Enables efficient implementation of many detection methods

• Multi-scale object detection ...

• Multi-scale edge detection ...

• Multi-scale feature point detection ...

• Manipulation of selected frequency bands ...

• Old stuff: Scale space

74



Fun with hybrid images...

Gaussian filter

Laplacian filter:

A. Oliva, A. Torralba, P.G. Schyns, “Hybrid Images,” SIGGRAPH 2006

GaussUnit impulse Laplacian of Gaussian

slide credit: Kristen Grauman75

http://cvcl.mit.edu/hybridimage.htm
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